III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

METAL CUTTING AND MACHINE TOOLS (MECHANICAL ENGINEERING)

Duration: 3 hours

Code: 20ME3502

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Describe the single-point cutting tool	L2	CO1	7 M				
		signature in the ASA and ORS system.							
	b)	Explain the orthogonal cutting model and	L2	CO1	7 M				
		describe the forces acting on the chip and							
		tool with a neat diagram.							
OR									
2	a)	Explain the types of chip formation during	L2	CO1	7 M				
		metal cutting in detail with neat schematics.							
	b)	The rake angle in an orthogonal cutting	L2	CO2	7 M				
		operation is 12°. The chip thickness before							
		the cut = 0.30 mm and the resulting chip							
		thickness after the $cut = 0.70$ mm. Calculate							
		(i) the shear plane angle and							
		(ii) the shear strain for the operation.							
L									

Max. Marks: 70

		UNIT-II			
3	a)	Explain the three possible modes by which the cutting tool can fail in machining.	L2	CO1	7 M
	b)	Describe the important properties required	L2	CO2	7 M
	0)	in a tool material and list the types of tool	L		/ 11/1
		materials.			
		OR			
4	a)	Why cutting fluids is essential in	L2	CO2	7 M
		machining? Discuss the application			
		methods of cutting fluids in detail.			
	b)	Machine shops are considering dry	L2	CO1	7 M
		machining because of certain problems			
		inherent in the use of cutting fluids. What			
		are the problems associated with the use of			
		cutting fluids?			
		UNIT-III			
5	a)	Classify the types of Lathe and explain the	L2	CO3	7 M
-		construction of Lathe with a neat sketch.			
	b)	Discuss the various Lathe operations.	L2	CO3	7 M
		OR			
6	a)	Describe the crank and slotted link	L2	CO3	7 M
		mechanism in shaper with a neat diagram.			
	b)	An engine lathe is used to turn a cylindrical	L2	CO3	7 M
		work part 150 mm in diameter by 500 mm			
		long. Cutting speed = 2.50 m/s, feed = 0.30			
		mm/rev and depth of $cut = 3.0$ mm.			
		Determine (i) cutting time and (ii) metal			
		removal rate.			

UNIT-IV							
7	a)	Explain the various drilling operations in detail.	L2	CO4	7 M		
	b)	Write the difference between up milling and down milling operations.	L2	CO4	7 M		
OR							
8	a)	Describe the process of manufacturing spur gear using the milling machine.	L2	CO4	7 M		
	b)	Determine the indexing crank movement for milling hexagonal bolt by simple indexing.	L2	CO4	7 M		
UNIT-V							
9	a)	Explain the working principle of the surface grinding machine in detail.	L2	CO5	7 M		
	b)	List the types of grinding wheels and explain their purposes.	L2	CO5	7 M		
OR							
10	a)	Explain the working principle of cylindrical grinding operation in detail.	L2	CO5	7 M		
	b)	Explain Lapping and Honing process with neat sketches.	L2	CO5	7 M		